Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Mathematical principles of Robotics
Pivovarník, Marek ; Kureš, Miroslav (oponent) ; Hrdina, Jaroslav (vedoucí práce)
This master's thesis deals with mathematical principles describing forward and inverse kinematics of robotic arm. In order to determine the position of end-effector, and thus to solve forward kinematics, it is necessary to define special Euclidean group. Such a group can be represented by matrices or dual quaternions. In this thesis the inverse kinematics, where the goal is to determine joint parameters using end-effector position, is solved by exponential mapping and Grobner basis. All mentioned descriptions of forward and inverse kinematics are applied to the specific robotic arm with three articulated joints. Furthermore, these methods are implemented and visualized in software Mathematica.
Mathematical principles of Robotics
Pivovarník, Marek ; Kureš, Miroslav (oponent) ; Hrdina, Jaroslav (vedoucí práce)
This master's thesis deals with mathematical principles describing forward and inverse kinematics of robotic arm. In order to determine the position of end-effector, and thus to solve forward kinematics, it is necessary to define special Euclidean group. Such a group can be represented by matrices or dual quaternions. In this thesis the inverse kinematics, where the goal is to determine joint parameters using end-effector position, is solved by exponential mapping and Grobner basis. All mentioned descriptions of forward and inverse kinematics are applied to the specific robotic arm with three articulated joints. Furthermore, these methods are implemented and visualized in software Mathematica.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.